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Active Learning

¾ In Passive Learning large annotated corpora are collected for tasks such as 
machine translation, dialogue modelling, etc.

Learning
Model

Annotation Fine-tuning

2



hhu.de

Active Learning

¾ In Passive Learning large annotated corpora are collected for tasks such as 
machine translation, dialogue modelling, etc.

¾ In Active Learning, the learning model selects the most beneficial datapoints to 
learn, reducing the annotation effort.
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Sequential Multi-Output Problem
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¾ Sequential Multi-Output problems require a label at each timestep for each output 
category.

¾ Expert labels can be very expensive and crowd labels very noisy.
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Our Approach
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¾CAMEL:
¾ Confidence-based Acquisition Model 

¾ for Efficient self-supervised active Learning 
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CAMEL
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Stage 1: Data selection
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CAMEL
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CAMEL
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Stage 2: Labelling

Stage 3: Semi-supervised learning
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Stage 3: Label validation

CAMELL – CAMEL with Label validation
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Confidence estimation
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¾ Incorporates intra-category features to capture 
category specific uncertainty.

¾ Incorporates inter-category features to capture the 
correlation between categories.

¾ The combined intra- and inter-category encodings 
used for predicting the confidence.

¾ Objective: Predict whether the prediction of the 
learning model is correct.

The Model

Inter category encoderIntra category encoder

Confidence Prediction

…Cat m Cat 1 Cat M
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Confidence estimation
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¾ Probability of the prediction / label.

¾ Uncertainty features extracted from the predictive 
distribution of the learning and noisy models:
¾ Total Uncertainty (Entropy)
¾ Knowledge Uncertainty

The uncertainty features

Learning model
Predictive distribution

Uncertainty 
measures

Probability
of prediction
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Uncertainty
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Uncertainty
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Uncertainty
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Uncertainty
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Uncertainty
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Uncertainty

¾ Uncertainty in Machine Learning models stem from 
two main sources:

¾ Data Uncertainty: Uncertainty which stems from 
ambiguity in the data.

¾ Knowledge Uncertainty: Uncertainty which stems 
from a lack of knowledge within the model.
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Uncertainty Estimation

¾ The source of uncertainty can be distinguished using an ensemble of models.
¾ The entropy in the predictive distribution is the total uncertainty.
¾ The variation between ensemble member predictions is the knowledge uncertainty.
¾ Data uncertainty is the difference between these two.
¾ This is computationally expensive especially for language models.

¾ Alternative: Learning a Dirichlet distribution, Dirichlet 𝜶 , over the probability 
simplex.
¾ The mean predictive distribution provides a measure of total uncertainty.
¾ The variation under this distribution provides a measure of knowledge uncertainty.

18
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Uncertainty Estimation
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¾ The variation between embeddings at different layers allows accurate post-hoc 
uncertainty learning.

Post-hoc Uncertainty Learning Using a Dirichlet Meta-Model, Shen, et. al. 2023
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Uncertainty Estimation Objective

¾ ELBO Objective:

¾ Expected Likelihood:

¾ KL Penalty: 

¾ Challenge: We require an informative prior Dirichlet 𝜷 .
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Dynamic Priors

¾ Train an ensemble of 𝐸 models on a small subset of the training data.
¾ Using predictions from this ensemble to produce the prior using Sterlings 

Approximation:
𝜷 = 𝛽! 𝒙 /𝝅 𝒙 , where
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¾ This prior is used in the first active learning step.
¾ After this the predicted posterior of the previous active learning step is used as 

a prior in order to update the beliefs of the model.
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(Mean – Total Uncertainty)

(Variation – Knowledge Uncertainty)



hhu.de

Experiments
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¾ Model: Ensemble T5-small encoder-decoder transformer.

¾ Uncertainty Estimation:
¾ Total Uncertainty: Entropy of the predictive distribution.
¾ Knowledge Uncertainty: Mutual information between predictive distribution and ensemble 

members.

¾ Dataset: WMT17 DE-EN for German to English translation.

¾ Confidence Estimation Model - Simplified model for the single category sequential task.

Machine Translation
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Results
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Machine Translation
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Experiments
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¾ Model
¾ Ensemble-SetSUMBT
¾ Meta-Uncertainty SetSUMBT

¾ Uncertainty Estimation:
¾ Total Uncertainty: Entropy of the predictive distribution or Entropy within the Dirichlet distribution.
¾ Knowledge Uncertainty: Mutual information between predictive distribution and ensemble 

members or knowledge uncertainty estimate using the Dirichlet distribution.

¾ Datasets:
¾ MultiWOZ 2.1 (Noisy version)
¾ MultiWOZ 2.4 (Cleaned version)

¾ Metric: Joint goal accuracy.

Dialogue Belief Tracking
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Results
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Dialogue Belief Tracking - Ensemble 
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Results
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Dialogue Belief Tracking – Ensemble Ablation 
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Results
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Dialogue Belief Tracking – PostHoc Meta Model
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Label Correction
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¾ Steps:
¾ Select labels in the dataset with label confidence below the threshold.
¾ If the prediction confidence is greater than the label threshold replace the label.

¾ Noisy MultiWOZ 2.1 dataset used to train the ensemble SetSUMBT model.

¾ Ensemble SetSUMBT used for label correction.

¾ Trippy (a state-of-the-art span prediction based) DST used to evaluate the quality of 
the corrections.

Label Correction Process
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Results

29

Model Label Corr. MultiWOZ 2.1 MultiWOZ 2.4

CE-SetSUMBT
None 51.79 61.63
Offline 52.83 63.32

TripPy
None 55.28 64.45
Offline 56.11 66.02
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Label Correction
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Examples

Conversation MultiWOZ 2.1 Labels and 
Corrections

User: I would like to find a place 
that serves moderately priced 
Chinese food.

{Restaurant:
{Food: Chinese, (95%)
Price: Moderate, (94%)
Day: Tuesday, (11%)
Day: not_mentioned}} (72%)

User: I need a train leaving on 
Friday and I want to get there by 
21:30. Leaving Broxbourne.

{Train:
{Dept.: Broxbourne, (94%)
Day: Friday, (95%)
Arrive by: 21:20, (1%)
Arrive by: 21:30}} (83%)
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Conclusion
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✓ Selective self-supervision improves efficiency.

✓ CAMELL SetSUMBT achieve 95% of a tracker’s full-training dataset performance using 
merely 16% of the expert-provided labels.

✓ CAMELL can be applied to automatically correct labels in a dataset.


