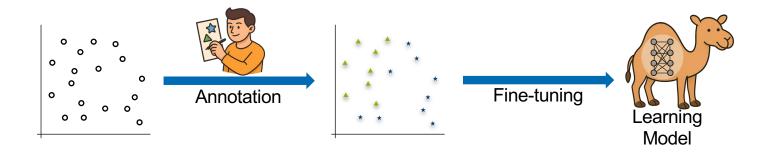


A Confidence-based Acquisition Model for Self-supervised Active Learning and Label Correction

Carel van Niekerk, Christian Geishauser, Michael Heck, Shutong Feng, Hsien-chin Lin, Nurul Lubis, Benjamin Ruppik, Renato Vukovic, and Milica Gašić

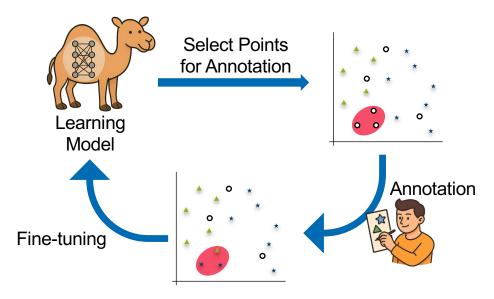
Active Learning

■ In Passive Learning large annotated corpora are collected for tasks such as machine translation, dialogue modelling, etc.



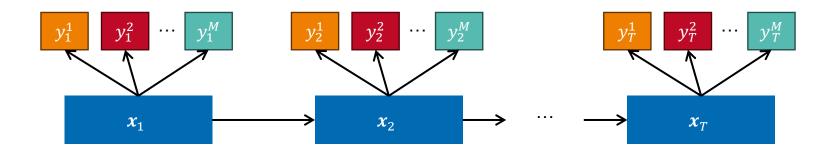
Active Learning

- In Passive Learning large annotated corpora are collected for tasks such as machine translation, dialogue modelling, etc.
- In Active Learning, the learning model selects the most beneficial datapoints to learn, reducing the annotation effort.



Sequential Multi-Output Problem

- Sequential Multi-Output problems require a label at each timestep for each output category.
- Expert labels can be very expensive and crowd labels very noisy.

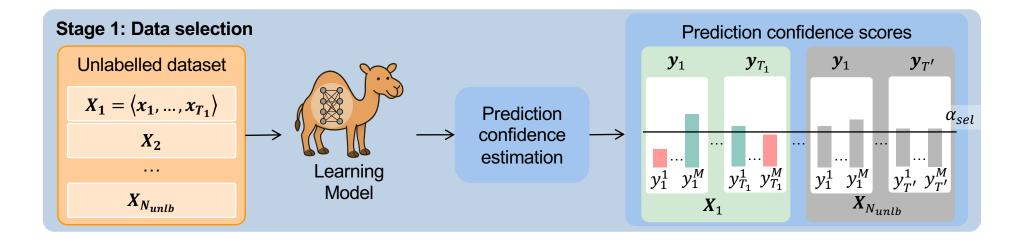


Our Approach

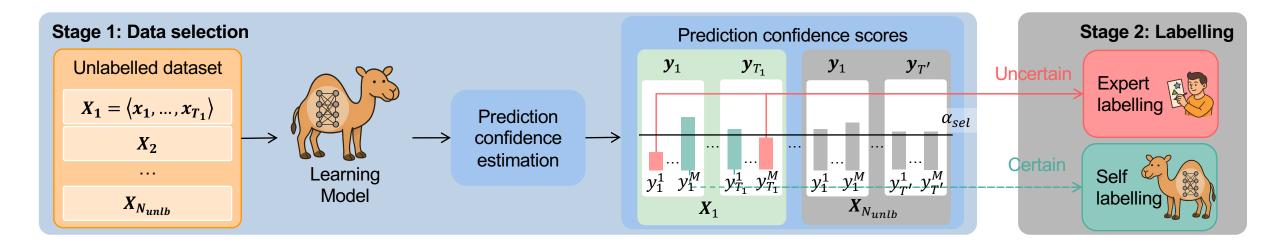
■ CAMEL:

- Confidence-based Acquisition Model
- for Efficient self-supervised active Learning

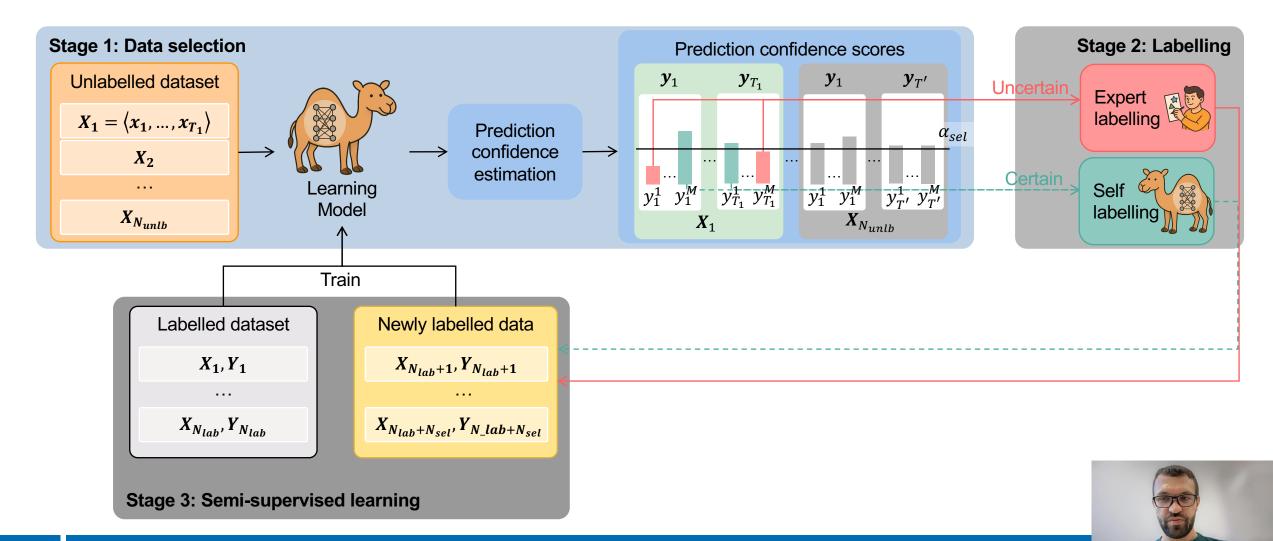
CAMEL



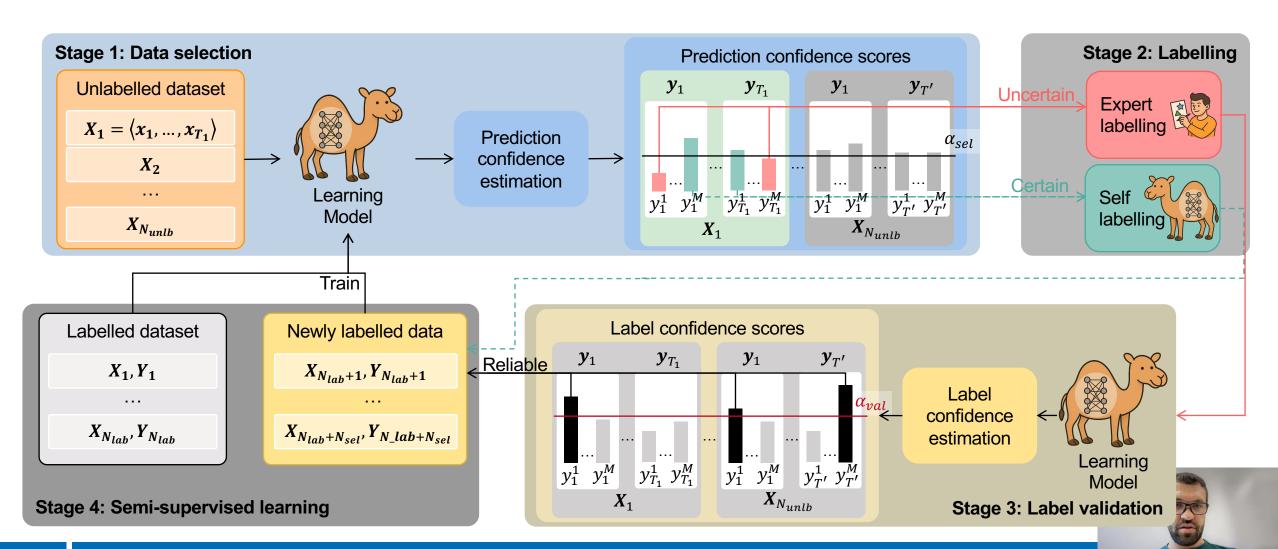
CAMEL



CAMEL



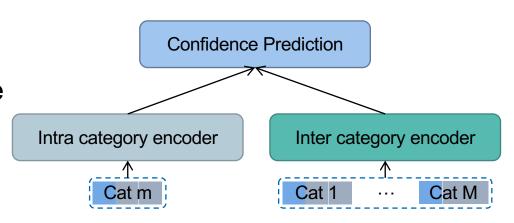
CAMELL – CAMEL with Label validation



Confidence estimation

The Model

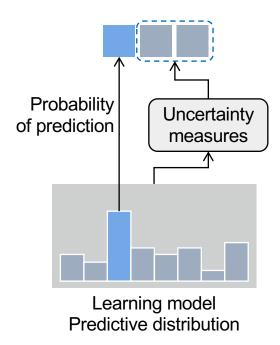
- Incorporates intra-category features to capture category specific uncertainty.
- Incorporates inter-category features to capture the correlation between categories.
- The combined intra- and inter-category encodings used for predicting the confidence.
- Objective: Predict whether the prediction of the learning model is correct.

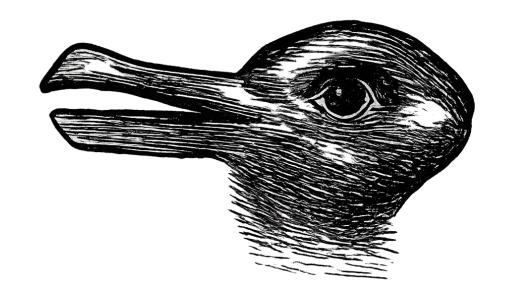


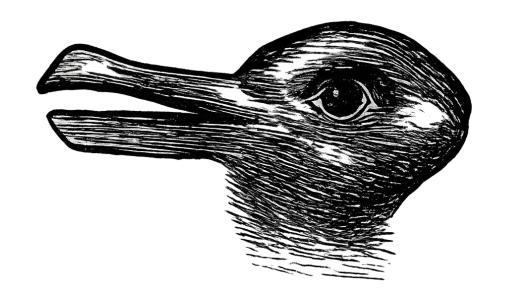
Confidence estimation

The uncertainty features

- Probability of the prediction / label.
- Uncertainty features extracted from the predictive distribution of the learning and noisy models:
 - Total Uncertainty (Entropy)
 - Knowledge Uncertainty







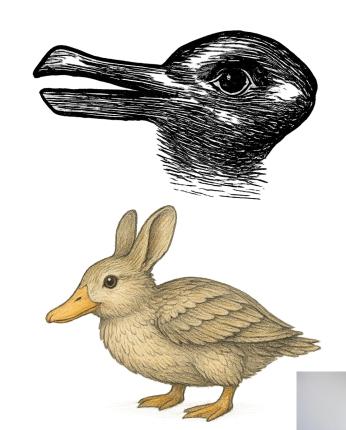
Duck	Rabbit
0.5	0.5

Duck	Rabbit
0.7	0.3

Duck	Rabbit	Dubbit
0.08	0.02	0.9

- Uncertainty in Machine Learning models stem from two main sources:
- Data Uncertainty: Uncertainty which stems from ambiguity in the data.

■ Knowledge Uncertainty: Uncertainty which stems from a lack of knowledge within the model.

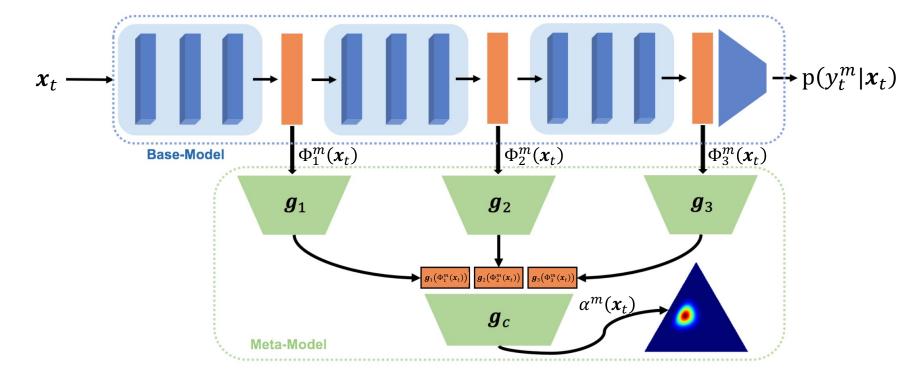


Uncertainty Estimation

- The source of uncertainty can be distinguished using an ensemble of models.
 - The **entropy** in the predictive distribution is the **total uncertainty**.
 - The variation between ensemble member predictions is the knowledge uncertainty.
 - Data uncertainty is the difference between these two.
 - This is computationally expensive especially for language models.
- Alternative: Learning a Dirichlet distribution, Dirichlet(α), over the probability simplex.
 - The mean predictive distribution provides a measure of total uncertainty.
 - The variation under this distribution provides a measure of knowledge uncertainty.

Uncertainty Estimation

■ The variation between embeddings at different layers allows accurate post-hoc uncertainty learning.



Uncertainty Estimation Objective

ELBO Objective:

$$\mathcal{L}(\boldsymbol{\theta}^{(\text{meta})}; \mathcal{D})$$

Expected Likelihood:
$$= \mathbb{E}_{p(x,y|\mathcal{D})} \left[\mathbb{E}_{p(\pi|x,\boldsymbol{\theta}^{(meta)})} [-\log p(y|\boldsymbol{\pi})] \right]$$

$$+ \lambda \mathbb{E}_{p(x,y|\mathcal{D})} \left[D_{KL} \left[p(\boldsymbol{\pi}|x,\boldsymbol{\theta}^{(meta)}) ||p(\boldsymbol{\pi}|\boldsymbol{\beta}) \right] \right]$$

■ KL Penalty:
$$+\lambda \mathbb{E}_{p(x,y|\mathcal{D})} \left[D_{KL} \left[p(\boldsymbol{\pi}|\boldsymbol{x},\boldsymbol{\theta}^{(\text{meta})}) || p(\boldsymbol{\pi}|\boldsymbol{\beta}) \right] \right]$$

Challenge: We require an **informative** prior Dirichlet(β).

Dynamic Priors

- Train an ensemble of E models on a small subset of the training data.
- Using predictions from this ensemble to produce the prior using Sterlings Approximation:

$$\begin{split} \pmb{\beta} &= \beta_0(\pmb{x}) \widehat{\pmb{\pi}}(\pmb{x}), \text{ where} \\ \widehat{\pmb{\pi}}(\pmb{x}) &= \frac{1}{E} \sum_{e=1}^E \pi_k^{(e)}(\pmb{x}) \quad \text{(Mean - Total Uncertainty)} \\ \beta_0(\pmb{x}) &= \frac{K-1}{2\sum_{k=1}^K \widehat{\pi}_k(\pmb{x}) d_k(\pmb{x})}, \text{ where} \\ d_k(\pmb{x}) &= \log \widehat{\pi}_k(\pmb{x}) - \frac{1}{E} \sum_{e=1}^E \log \pi_k^{(e)}(\pmb{x}) \quad \text{(Variation - Knowledge Uncertainty)} \end{split}$$

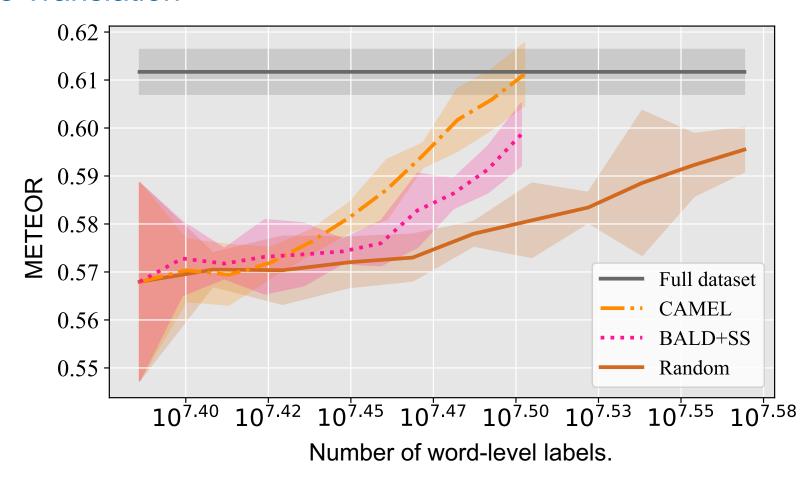
- This prior is used in the first active learning step.
- After this the predicted posterior of the previous active learning step is used as a prior in order to update the beliefs of the model.

Experiments

Machine Translation

- Model: Ensemble T5-small encoder-decoder transformer.
- Uncertainty Estimation:
 - Total Uncertainty: Entropy of the predictive distribution.
 - Knowledge Uncertainty: Mutual information between predictive distribution and ensemble members.
- Dataset: WMT17 DE-EN for German to English translation.
- Confidence Estimation Model Simplified model for the single category sequential task.

Machine Translation

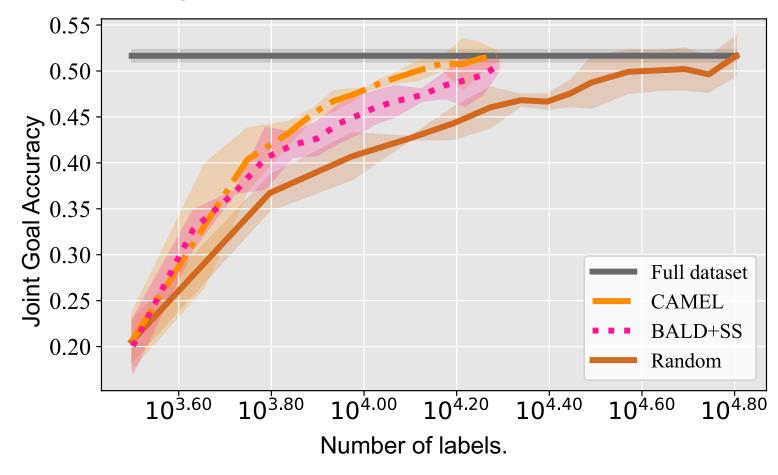


Experiments

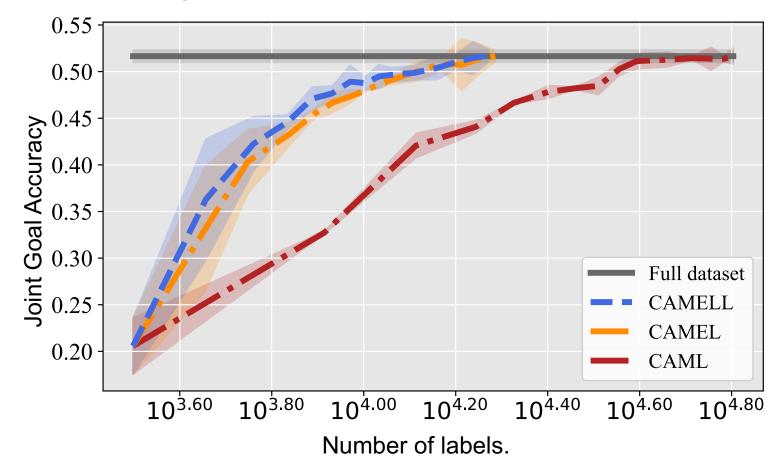
Dialogue Belief Tracking

- Model
 - Ensemble-SetSUMBT
 - Meta-Uncertainty SetSUMBT
- Uncertainty Estimation:
 - Total Uncertainty: Entropy of the predictive distribution or Entropy within the Dirichlet distribution.
 - Knowledge Uncertainty: Mutual information between predictive distribution and ensemble members or knowledge uncertainty estimate using the Dirichlet distribution.
- Datasets:
 - MultiWOZ 2.1 (Noisy version)
 - MultiWOZ 2.4 (Cleaned version)
- Metric: Joint goal accuracy.

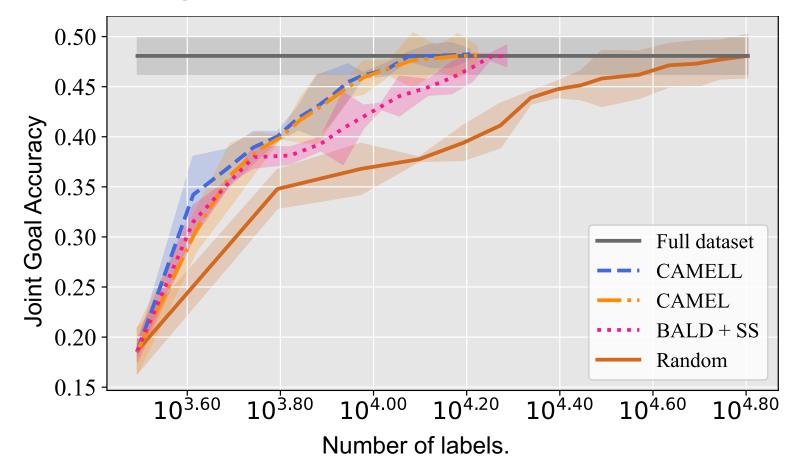
Dialogue Belief Tracking - Ensemble



Dialogue Belief Tracking – Ensemble Ablation



Dialogue Belief Tracking – PostHoc Meta Model



Label Correction

Label Correction Process

- Steps:
 - Select labels in the dataset with label confidence below the threshold.
 - If the prediction confidence is greater than the label threshold replace the label.
- Noisy MultiWOZ 2.1 dataset used to train the ensemble SetSUMBT model.
- Ensemble SetSUMBT used for label correction.
- Trippy (a state-of-the-art span prediction based) DST used to evaluate the quality of the corrections.

Model	Label Corr.	MultiWOZ 2.1	MultiWOZ 2.4
CE-SetSUMBT	None	51.79	61.63
	Offline	52.83	63.32
TripPy	None	55.28	64.45
	Offline	56.11	66.02

Label Correction

Examples

Conversation	MultiWOZ 2.1 Labels and Corrections	
User: I would like to find a place that serves moderately priced Chinese food.	<pre>{Restaurant: {Food: Chinese, (95%) Price: Moderate, (94%) Day: Tuesday, (11%) Day: not_mentioned}} (72%)</pre>	
User: I need a train leaving on Friday and I want to get there by 21:30. Leaving Broxbourne.	{Train: {Dept.: Broxbourne, (94%) Day: Friday, (95%) Arrive by: 21:20, (1%) Arrive by: 21:30}} (83%)	

Conclusion

- ✓ Selective self-supervision improves efficiency.
- ✓ CAMELL SetSUMBT achieve 95% of a tracker's full-training dataset performance using merely 16% of the expert-provided labels.
- ✓ CAMELL can be applied to automatically correct labels in a dataset.

